小學及一下
難點6 函數值域及求法
函數的值域及其求法是近幾年高考考查的重點內容之一。本節主要幫助考生靈活掌握求值域的各種方法,并會用函數的值域解決實際應用問題。
●難點磁場
(★★★★★)設m是實數,記M={m|m>1},f(x)=log3(x2-4mx+4m2+m+ )。
(1)證明:當m∈M時,f(x)對所有實數都有意義;反之,若f(x)對所有實數x都有意義,則m∈M。
(2)當m∈M時,求函數f(x)的最小值。
(3)求證:對每個m∈M,函數f(x)的最小值都不小于1。
難點7 奇偶性與單調性(一)
函數的單調性、奇偶性是高考的重點內容之一,考查內容靈活多樣。本節主要幫助考生深刻理解奇偶性、單調性的定義,掌握判定方法,正確認識單調函數與奇偶函數的圖象。
●難點磁場
(★★★★)設a>0,f(x)= 是R上的偶函數,(1)求a的值;(2)證明: f(x)在(0,+∞)上是增函數。
難點8 奇偶性與單調性(二)
函數的單調性、奇偶性是高考的重點和熱點內容之一,特別是兩性質的應用更加突出。本節主要幫助考生學會怎樣利用兩性質解題,掌握基本方法,形成應用意識。
●難點磁場
(★★★★★)已知偶函數f(x)在(0,+∞)上為增函數,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0。
●案例探究
[例1]已知奇函數f(x)是定義在(-3,3)上的減函數,且滿足不等式f(x-3)+f(x2-3)<0,設不等式解集為A,B=A∪{x|1≤x≤ },求函數g(x)=-3x2+3x-4(x∈B)的最大值。
難點9 指數函數、對數函數問題
指數函數、對數函數是高考考查的重點內容之一,本節主要幫助考生掌握兩種函數的概念、圖象和性質并會用它們去解決某些簡單的實際問題。
●難點磁場
(★★★★★)設f(x)=log2 ,F(x)= +f(x)。
(1)試判斷函數f(x)的單調性,并用函數單調性定義,給出證明;
(2)若f(x)的反函數為f-1(x),證明:對任意的自然數n(n≥3),都有f-1(n)> ;
(3)若F(x)的反函數F-1(x),證明:方程F-1(x)=0有惟一解。
標簽: